skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Wails, Ryan"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Website fingerprinting (WF) attacks allow an adversary to associate a website with the encrypted traffic patterns produced when accessing it, thus threatening to destroy the client-server unlinkability promised by anonymous communication networks. Explainable WF is an open problem in which we need to improve our understanding of (1) the machine learning models used to conduct WF attacks; and (2) the WF datasets used as inputs to those models. This paper focuses on explainable datasets; that is, we develop an alternative to the standard practice of gathering low-quality WF datasets using synthetic browsers in large networks without controlling for natural network variability. In particular, we demonstrate how network simulation can be used to produce explainable WF datasets by leveraging the simulator's high degree of control over network operation. Through a detailed investigation of the effect of network variability on WF performance, we find that: (1) training and testing WF attacks in networks with distinct levels of congestion increases the false-positive rate by as much as 200%; (2) augmenting the WF attacks by training them across several networks with varying degrees of congestion decreases the false-positive rate by as much as 83%; and (3) WF classifiers trained on completely simulated data can achieve greater than 80% accuracy when applied to the real world. 
    more » « less
  2. Network experimentation tools are vitally important to the process of developing, evaluating, and testing distributed systems. The state-of-the-art simulation tools are either prohibitively inefficient at large scales or are limited by nontrivial architectural challenges, inhibiting their widespread adoption. In this paper, we present the design and implementation of Phantom, a novel tool for conducting distributed system experiments. In Phantom, a discrete-event network simulator directly executes unmodified applications as Linux processes and innovatively synthesizes efficient process control, system call interposition, and data transfer methods to co-opt the processes into the simulation environment. Our evaluation demonstrates that Phantom is up to 2.2× faster than Shadow, up to 3.4× faster than NS-3, and up to 43× faster than gRaIL in large P2P benchmarks while offering performance comparable to Shadow in large Tor network simulations. 
    more » « less
  3. Abstract The popularity of Tor has made it an attractive target for a variety of deanonymization and fingerprinting attacks. Location-based path selection algorithms have been proposed as a countermeasure to defend against such attacks. However, adversaries can exploit the location-awareness of these algorithms by strategically placing relays in locations that increase their chances of being selected as a client’s guard. Being chosen as a guard facilitates website fingerprinting and traffic correlation attacks over extended time periods. In this work, we rigorously define and analyze the guard placement attack . We present novel guard placement attacks and show that three state-of-the-art path selection algorithms—Counter-RAPTOR, DeNASA, and LASTor—are vulnerable to these attacks, overcoming defenses considered by all three systems. For instance, in one attack, we show that an adversary contributing only 0.216% of Tor’s total bandwidth can attain an average selection probability of 18.22%, 84× higher than what it would be under Tor currently. Our findings indicate that existing location-based path selection algorithms allow guards to achieve disproportionately high selection probabilities relative to the cost required to run the guard. Finally, we propose and evaluate a generic defense mechanism that provably defends any path selection algorithm against guard placement attacks. We run our defense mechanism on each of the three path selection algorithms, and find that our mechanism significantly enhances the security of these algorithms against guard placement attacks with only minimal impact to the goals or performance of the original algorithms. 
    more » « less